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The linear response of a driven dissipative system near a bifurcation instability is studied. Using
a previously established scaling relation, it is shown that the response to a small coherent signal can
be characterized by a Lorentz transformation of a spinor whose components are the two orthogonal
phases (quadratures) of the signal. The analysis shows that by forming an array of such systems
it should be possible to demonstrate features of the Lorentz group experimentally, e.g., Wigner
rotations and Berry’s phase of the Lorentz group, in simple bifurcating systems.

PACS number(s): 05.45.+b, 02.20.—a, 02.90.+p, 03.30.+p

Lorentz transformations and the associated Lorentz
group are usually considered as synonymous with the
special theory of relativity. However, the Lorentz group
(LG) is a mathematical group and one should therefore
not be surprised to encounter the LG outside the spe-
cial theory of relativity. For example, it has been known
for a number of years that this group also enters into
the theory of squeezed light [1-3]. This opens up for
the possibility of studying features of the LG in nonrela-
tivistic systems entirely outside the usual domain of the
special theory of relativity; features which have not yet
been observed experimentally neither in the special the-
ory of relativity nor in squeezed light [2,3]. We mention,
for example, the measurement of finite Wigner rotations
(since Lorentz transformations in nonparallel directions
do not commute but involve a rotation [2,4,5]), or Berry’s
geometrical phase associated with the LG [3,6].

In this paper we show that important features of the
LG are also encountered in a driven dissipative dynam-
ical system in the vicinity of a bifurcation point. The
system under consideration is a nonlinear driven oscilla-
tor with linear damping. As an example we perturb the
system with a small signal in the linear response limit
and show that the response corresponds to a Lorentz
boost of a spinor characterizing the input signal. The
basis of our analysis is the existence of scaling proper-
ties in the vicinity of a period-doubling bifurcation point
[7], which enables us to present an analytical solution of
the transformation properties and moreover implies that
these Lorentz-like transformations are in fact a general
feature of a whole class of nonlinear bifurcating oscilla-
tors. Since the system under consideration is dissipative
and therefore an open system, there are modifications to
the standard Lorentz transformation, but, surprisingly,
important features of the Lorentz group are preserved.
As a result it should be possible from an experimental
point of view to demonstrate properties of the Lorentz
group; e.g., Wigner rotations and the geometrical phase
of the Lorentz group, in simple bifurcating systems.

We consider a class of nonlinear damped oscillators
described by the following second-order differential equa-
tion:
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dV(z)
dzx

Ty + axy + = Ap cos(2wgt + ¢)

+Ag cos(wgrt + 6). (1)

Here z is the position and V(x) a generic nonlinear po-
tential. The only restrictions on the potential are first,
that the second-order derivative d2V (z)/dz?|,—¢ = wi >
0. This means that the system has a small-amplitude
relaxation-frequency given by wr = wo? — a?/4, where a
is the damping constant with the constraint o <« wq. Sec-
ond, that the third-order derivative d3V (z)/dz3|,—0 =
v # 0. The oscillator is driven by a harmonic force of
amplitude Ap, frequency 2wg, and phase ¢. The second
term on the left-hand side is a perturbing signal with
amplitude Ag, frequency wg, and phase 6, and it is the
system’s response to this signal that will be studied here.
The theory presented is based on the following assump-
tions. (i) As the driving amplitude Ap is increased the
system undergoes a period-doubling bifurcation, and it
is only the response of the system up till the bifurca-
tion point that is studied. (ii) We drive the system at
twice the resonance frequency, i.e., wp = 2wg. (iii) The
coupling of the system to the environment can be char-
acterized by a linear damping term, and the obtained
results are valid in the limit o — 0.

The nonlinear term associated with v breaks the sym-
metry of the potential around z = 0, and is responsi-
ble for the ability of the system to undergo a period-
doubling bifurcation. Higher-order terms of the poten-
tial V(z) become unimportant since the bifurcation point
and thereby the limit cycle z(t) tend to zero in the limit
o — 0 studied here [7]. Therefore the class of nonlinear
potentials covered by this theory is very broad.

On the basis of the above assumptions Eq. (1) can
be solved in the limit of a linear response. First, Eq.
(1) is linearized about the cycle zo(t) of the unperturbed
system, i.e., for As = 0, which gives

2
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£=0, (2)
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where £(t) = z(t) — zo(t) is the deviation from the limit
cycle. In the limit of small damping the solution to the
above homogeneous equation is [7]

€1 (t) = [cos(wrt + ¢/2) £ sin(wrt + ¢/2)]
X exp [(—1 + 3—5) %t] ) 3)

where the critical value of the drive A¢ (the bifurcation
point) is given by

604V”(a:m)3/2 6awg?
AC = =
VI” (:Em) py

Here z,, is the minimum of the potential. In the
last expression we have used that wp — wg for o —
0. The above solution has been obtained by using
the following expression for the limit cycle, zo(t) =
[-Ap/(3wgr?)] cos(2wrt+ @), and only retaining terms in
the potential V (z) until third order. The theory is only
valid for Ap < Ac, a restriction which indicates that
the amplitude of the limit cycle scales with the damping.
This indicates that the behavior of the system is con-
trolled by the properties of the nonlinear potential near
the minimum point. We note that the above result shows
that in the scaling limit o — 0 the response has universal
features.

By use of the above solutions [Eq. (3)] the system’s
response to the small signal Ag cos(wgt+8) can be found
as

(4)

£(t) =€+(2)

L lo(s) , C & als)
[ S0 [ S e

(5)
Here o(t) = Ascos(t + 0) is the small input signal

and W(s) the Wronski determinant given by W(t) =
J

A 1
A(A,d’aASaaawR): (a(jR) 1

1-22

The determinant of the matrix is detA= Ag/[a wr(1 —
A2)]. The above transformation matrix can be expressed
in a more transparent form by means of the Pauli matri-

ces
(10 (0 1
0 — 0 1 y Og = 1 0 )
oo (0 i (1 0
v=li o) =T \o0o-1)>

and the parametrization

(11)
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wrexp(—at). Solving this equation we obtain the re-
sponse,

As 1.
P t
wwn T2 sin(wgt + 6)

£(t) =

—{—1_)\)‘2 cos(wrt+ ¢ —0)| , (6)
where A = Ap/Ac. The response to higher harmonics
than the resonance frequency has been neglected since it
can be shown that they vanish in the limit o — 0.

We now turn to a representation of the above results
in terms of a transformation of a two-component spinor.
We first note that the input signal o(t) can be viewed
as the projection of a constant spinor £ projected onto a
rotating unit vector e(t):

o(t) = As cos(wgt + 0) = &-e(t), (7

(&) cos 6
- (8)-n( ).

__ [ coswpgt
e(t) = ( sinwpt ) )
As a result, the response in Eq. (6) can be expressed as
a linear mapping of the constant two-component spinor
(&1,&2), followed by a projection on the rotating unit vec-

tor e(t). The linear transformation of the two compo-
nents (£1,&2) is given by

&\ _ &1
(£i> —A(A7¢,A55a7wR)(£2>v (9)

where the transformation matrix takes the form

where

(8)

1 .
ek T A T
(10)
) A
Tz Sin ¢ 1 Cos ¢
[
COSh®/2=(1_;w ) 51nh¢’/2:(1_—):\2)1—,,,.
(12)
In exponential form we finally obtain
. o-n o]
A(®,¢) = —io, exp (_T 'I>) ag cosh 3 (13)

where o = (0,04,0,), n = (cos¢,0,sin¢) , and ap =
As/(a wg). The first Pauli matrix (—ioy) expresses a
rotation of —m/2 about the “y axis” and can be related
to the phase shift of the input signal at resonance. The
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second part corresponds to a Lorentz transformation of
a spinor [8]. As is well known, such a Lorentz transfor-
mation involves either a contraction or a stretching (the
points on a circle are transformed into an ellipse). This
feature reflects the properties of the bifurcation in the
following sense. As the bifurcation point is approached,
one direction in phase space becomes critical (an eigen-
value tends to —1), and as a result this direction in phase
space is stretched. The orthogonal direction in phase
space is governed by the second eigenvalue, which at the
same time is stabilized, with the result that this direc-
tion is contracted. In this theory the bifurcation point
Ac plays a role similar to the speed of light in the special
theory of relativity. We note that the second component
of the directional vector n is always zero. This indicates
that the present transformation is a subgroup of the full
Lorentz group, corresponding to one less spatial dimen-
sion. The direction of the Lorentz boost is given by the
phase ¢ of the driving field. Finally, the last factor is
a scalar function that makes the transformation an ex-
panding one, i.e., detA(®P,¢) > 1. This reflects the fact
that we are dealing with an open system being pumped
by the driving field.

The transformation in Eq. (13) constitutes our main
result. Considering now an array of identical nonlinear
oscillators driven at different amplitudes and phases and
coupled in such a way that the output of one oscillator
becomes the input of the next one, it should be possible
to demonstrate specific features of the LG. For exam-
ple, two coupled oscillators correspond to the successive
transformations

A(®y,¢2) A(P1,¢1)

®, ®, o n
= —ag cosh7 cosh—z- exp( 2 <I>2)

xexp (-T2 @) (14)

where n; = (cos ¢;,0,sin¢;), and where the effect of o,
has been incorporated. Disregarding the prefactor this
corresponds to two successive Lorentz transformations.
As is well known from Wigner’s work [4] the combination
of two Lorentz transformations in nonparallel directions
corresponds to a single Lorentz transformation and an
additional spatial rotation, the so-called Wigner rotation.
Consequently, the above transformation has the general
form

AP, 42) A(P1,901)

® P A
= —a2 cosh —221 cosh —§1~ exp (z ay2 )

o-1n3
2 ¢3) ) (15)

X exp (—
where A is the Wigner rotation. In the special case where
n; = (1,0,0) and ny = (0,0,1) the rotation angle is given
by

® ®
tan % = — tanh ?1 tanh 72 , (16)

and the parameters in the Lorentz transformation be-
come n3 = (cos @3, 0,sin @3), where

cosh ®3 = cosh @, cosh @, ,
(17)
tan ¢z = —tanh ®, / sinh @, .

The above result clearly demonstrates that it is possi-
ble to find features of the LG in these simple nonlin-
ear systems. Using a system which undergoes a period-
doubling bifurcation is very convenient, since the sys-
tem’s response to the small signal will be at the frequency
wpr whereas the driving frequency will be at 2wg. So by
the use of a filtering process it should be possible to iso-
late the response. The main difference between the LG
and a series of transformations of the above type is the
scalar function that makes the transformation expand.
In an experimental setup this feature can be removed by
an appropriate attenuation of the signal after each trans-
formation.

In conclusion it has been shown that a large class
of nonlinear oscillators in the vicinity of a bifurcation
point have transformation properties which are similar
to Lorentz transformations in 241 dimensions. For ex-
ample, the response of an oscillator to a small harmonic
signal can be viewed as a Lorentz transformation of a
spinor. The systems studied here are by nature dissi-
pative and the transformation properties are therefore
intimately connected with this fact, and it follows that
successive transformations do not form a mathematical
group since the inverse of a transformation does not ex-
ist. Nevertheless, many features of the LG are still pre-
served, like the Wigner rotations caused by noncommut-
ing Lorentz transformations. It is important to realize
that the role of dissipation is not restricted to the influ-
ence on the transformation properties. The damping in
effect enters in a crucial way everywhere in our analysis.
For example, if there were no damping the transforma-
tions described here would not exist. This is clear from
the structure of the solutions in (3) to the homogeneous
equation since, if the damping is zero, one of the solu-
tions will be unstable, and the theory breaks down. The
theory also ceases to be valid at the bifurcation point,
since the linear response diverges. In real systems such
a divergence does not take place due to nonlinearities,
but in many cases deviations only occur very close to
the bifurcation point. The linear theory is therefore ex-
pected to work well, except at a small region close to the
bifurcation point.

The difference between the present approach and the
theory presented in Refs. [2,3] on the LG and squeezed
states, can be stated as follows: The present theory is
in contrast to the theory on squeezed states based on
dissipative systems, a dissipation which is of importance
for the existence of the Lorentz-like transformations dis-
cussed here. In addition, the present theory is formulated
in a scaling limit, which makes the results universal for
a large class of systems.

Although the theory is formulated in the limit of damp-
ing tending to zero (at the transition between a dissipa-
tive system and a Hamiltonian system), we believe that



RAPID COMMUNICATIONS

R22 H. SVENSMARK AND H. C. FOGEDBY 49

features of the theory remain valid at finite values of the
damping. It is therefore hoped that it should be possible
to demonstrate properties of the Lorentz group experi-
mentally in simple nonlinear oscillators, such as Wigner
rotations and the geometrical phase of the Lorentz group.
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